5分钟讲清楚常用加密算法 动态
为什么要加密?
(相关资料图)
当然是为了保密。
最早的密码应用,都伴随着阴谋与战争。
中国古代的“阴符”、“阴书”就是其中的代表。
到了近代,二战最著名的一个故事,就是纳粹德国的Enigma密码机
以及图灵和他发明的密码破解机。
可以说,现代战争中,信息安全极其重要
如果你的部署、命令都被对手知道
你收到的指令都是对手伪造的
这还怎么打?
在当下,加密数据和密码的应用,
从军事,到商业领域,以及科学界
乃至每个人普通的生活
如果没有数据加密,每个人的信息都是透明的
想想可怕的电话诈骗,你还觉得自己的信息安全吗?
有一句话说的是:
大数据时代,没有秘密
加密方式
最常见的计算机加密方式有三种:
对称、非对称、摘要
对称的意思是:
我有一个秘钥K,能把原文 A 加密成 A1,还能把 A1 还原成 Af(A, K) =A1f(A1, K) =A
对称加密用途最为广泛,
操作简单,速度快,
适合场合多样
但缺点很明显,秘钥K太关键了
如果你需要让密文被其他授信的人访问
必须给他发秘钥
但问题是,
只要得到秘钥,就能破解一切,包括非法用户
非对称安全性稍微高一点
有2个秘钥,一般是成对的公钥和私钥
通常是用公钥加密,私钥解密
这种情况下,解决了对称加密的发送秘钥问题
现在公钥是公开的,私钥只有我自己有
永远不发送,就不会泄密
摘要加密一般采用的是hash算法,
只加密不解密,
适合于只验证对不对,而不验证是什么。
举个朴素例子:
二中的学生,学号格式是 L220130103 格式
三中的学生,学号格式是 PLE821 格式
现在我要验证这个人是哪个学校的,
其实无需关注具体内容,
简单判断一下长度就可以了
当然真正的算法没这么简单
下面具体来谈
便于大家统一理解
我们建一个项目
统一使用hutool工具包
cn.hutool hutool-all 5.8.5
对称加密
最简单的是des方法
他使用一个简单的秘钥,就可以实现加密和解密
我们写一个junit的test,或者写一个main也可以
class Test1 {@Testvoid test() {String text0 = "这是原文";String key = "xiaomian";DES des = new DES(key.getBytes());String text1=des.encryptBase64(text0);System.out.println(text1);}}
运行结果是 +iJWs7q8+dyiRBouA8lDBA==
我们使用秘钥 “xiaomian”,
把“这是原文”,加密成了一个看不懂的字符串
然后开始解密
class Test1 {@Testvoid test() {String key = "xiaomian";DES des = new DES(key.getBytes());String text2=des.decryptStr("+iJWs7q8+dyiRBouA8lDBA==");System.out.println(text2);}}
运行结果是 这是原文
还是同一个key,
用相反的方法,把原文解出来了
操作非常简单。
des就是一个最简单的对称加解密方法
类似的还有aes算法
可以使用hutool工具包,
操作差不多
非对称加密
使用非对称的主要原因
就是 安全、安全、还是安全
非对称在性能方面和对称没的比
因此,建议非对称使用短数据场合
而长数据使用对称实现。
最常用的是RSA算法
首先要生成一对秘钥,这个就没法人工创造了
我们可以借助工具
class Test2 {@Testvoid test() { KeyPair pair = SecureUtil.generateKeyPair("RSA"); String privateKey = Base64.encode(pair.getPrivate().getEncoded()); System.out.println("privateKey:" + privateKey); String publicKey = Base64.encode(pair.getPublic().getEncoded()); System.out.println("publicKey:" + publicKey);}}
输出结果为:
privateKey:MIICdgIBADANBgkqhkiG9w0BAQEFAASCAmAwggJcAgEAAoGBALBgrUOQySQB72VrGyijYZcaNM26t49oaKlNddu4SLpEdJzpUnVjXtIi9Nj/DkFBXgSB9FYdrv7MpQWzTmLw0do6pcfo2cekmBGPnFRdChtEf8Npq0pAV2LlNahwkB8fxZcbQYaaWBuBkx7aHT09JGsEpi9P3y7ae4vwYmFlWgEHAgMBAAECgYBVBnXgEWb1Zb1rLaPNBl3gQrDb0Dv29QUnQIElZ4QfzypMDipDDqFCObnA9cuAZ6uUDrWj4fFfQXX39oU+KwtuESddT9rJw1hPSy2i5ityEyYO5OZQRJaTVWPWzpph+bqFLkngaOvlr3OBG7YtywUL0P8toz2pOQKpoQOkffetuQJBAP26GKiOcs/sKhrzuM/t0S2ERXXDcu07jWxJ8gioQBuQaM7AA14tbiRzaZm3Xt+cGPjHJUGEJpDvGLQ9MavEZDMCQQCx9S+JevTGpxHMX/R3uUawlTsks1keyd0rqBtqQQx7V9Bm8htrlVU3QbhacFd/FJodWX7mGOAO6nLVGK/5qXvdAkB13zSBadvwuDg/WSZsgoEA8kgKk4gaqeXjft7QIsnVhFsMYauu3tAiYvOWE9ghbbU0LeAi9a+s+UayxRMERzJ9AkA5Y7fL32I2+kQMI9nEDnUUl1u2bzxLaJAx9wm4T3gGAwDLYkKjhEoyArjAOcCN1AgLdQQuklEXnlYgENEXc6flAkEAwDbTBfOtuP/6S5nU0gX9D5fYlF/fz4YTfBjHC2dZ/wrmWlJA0f7QFf5DysQB9AXJX6ZWL/3LkMtHPafqBMKpJw==publicKey:MIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKBgQCwYK1DkMkkAe9laxsoo2GXGjTNurePaGipTXXbuEi6RHSc6VJ1Y17SIvTY/w5BQV4EgfRWHa7+zKUFs05i8NHaOqXH6NnHpJgRj5xUXQobRH/DaatKQFdi5TWocJAfH8WXG0GGmlgbgZMe2h09PSRrBKYvT98u2nuL8GJhZVoBBwIDAQAB
看吧,鬼也看不懂
不过能用就行
接下来,开始使用秘钥对,进行加密和解密
class Test2 {static String privateKey;static String publicKey;@BeforeAllstatic void createKey() { KeyPair pair = SecureUtil.generateKeyPair("RSA"); privateKey = Base64.encode(pair.getPrivate().getEncoded()); System.out.println("privateKey:" + privateKey); publicKey = Base64.encode(pair.getPublic().getEncoded()); System.out.println("publicKey:" + publicKey);}@Testvoid test() {String text = "这是原文";RSA rsa = new RSA(AsymmetricAlgorithm.RSA_ECB_PKCS1.getValue(), privateKey, publicKey); String text1 = rsa.encryptBase64(text, KeyType.PublicKey); System.out.println("公钥加密: " + text1); String text2 = rsa.decryptStr(text1, KeyType.PrivateKey); System.out.println("私钥解密: " + text2);}}
输出结果为:
公钥加密: KSifTf6tS6LGlBT9LJC33VXzkXtaQEIGJcpf1BU2ptzRXTtBzvjx83EffCqntD7/M7ZciTr4MIBFBPFCxLs9NVEeC4K9/B8fQE/3hdsMzWBTnKQzQR2vd1i5mOgFaHYwTLwrq9Dbkv1YGluCb004YtLEqdjSO/Oljs7x2YVtvGc=私钥解密: 这是原文
也可以反过来用
@Testvoid test() {String text = "这是原文";RSA rsa = new RSA(AsymmetricAlgorithm.RSA_ECB_PKCS1.getValue(), privateKey, publicKey); String text1 = rsa.encryptBase64(text, KeyType.PrivateKey); System.out.println("私钥加密: " + text1); String text2 = rsa.decryptStr(text1, KeyType.PublicKey); System.out.println("公钥解密: " + text2);}
私钥加密: Ty5YGXHUajKHtlmQ7yGYJtc39Rjb3IvSIm7WWg4+Ge6u8MDeJ3TLYZokgBbAMZRcZBZ8bIWiou12+KxoW8moRwke4PlWVipgwhC2l6qo7WtTMiwnGh+0+B8wnY3OySFK4ZeOMQFgYuiTL2uZqofLXyNzwID7GKCfWI6EL29wtbE=公钥解密: 这是原文
对称算法的特点就是
随便先用谁,然后用另一个解
一般来说,有意义的信息,加密传递
建议使用 公钥加密,私钥解密
这种方法,确保信息只能由你指定的对象收到
另一种反过来的做法,
私钥加密,公钥解密
用于数字签名场合
证明这个签名是某人做的
因为只有他有他自己的私钥
摘要加密
摘要加密是单向的
能加不能解
主要目的是生成特征码
常用算法包括 md5,sha 等等
class Test3 {@Testvoid test() {String text = "这是原文";String text1 = DigestUtil.md5Hex(text); System.out.println(text1);}}
输出结果是:
531ffeed49bb13a6cf93049cc1e5ee53
比如系统密码,一般采用摘要加密
假设我的密码是 123456,
md5之后变成了 e10adc3949ba59abbe56e057f20f883e
如果有人能看到数据库表,
哪怕他找到了我的密码 e10adc3949ba59abbe56e057f20f883e,
也不知道我实际的密码是123456
当登陆时,会对用户输入的密码再次md5,
如果结果还等于e10adc3949ba59abbe56e057f20f883e,
就表示输对了密码。
摘要加密的特点是
输出结果位数是固定的
比如上面列出的md5,加密后永远是固定长度
他的特点主要是:
输入不同,加密结果就不同输入相同,加密结果一定相同
现在一般md5用的也少,主要是长度和复杂度
一般使用 sha256 或 sha512
他可以做简化验证
比如,我有一个文档,大小为 100M
如何验证他的内容发生串改
我们不可能拿2个100M的文件,逐个字节比较
这时,只要对2者分别做摘要运算,
得到一个短的字符串,对他们比较就可以了
这种验证的特点是:我知道你对和不对,但我不知道哪错了
总结
三种方法中,一般使用原则是
速度快,用对称安全高/数据少,用非对称用于验证对错,保留特征码,用摘要大家可以试试,顺便安利一下hutool,
非常优秀的工具包
之后我们会专文介绍国密算法
相关阅读
精彩推荐
- 5分钟讲清楚常用加密算法 动态
- 热讯:简单的英雄往往被人忽视,用这几个英雄上分,保证把把MVP
- 【环球聚看点】笑喷!赵睿吹牛扣篮完爆郭艾伦,伦哥:我扣篮都费劲 他250斤跳不高
- 切尔诺贝利核电站事件发生在哪一年 全球即时
- 全球播报:天娱数科:公司会继续做好经营管理,为股东创造更多价值!
- 英维克:公司为科陆电子的储能系统提供空调、冷机等热管理产品 通讯
- 当前快看:福彩3D第23073期欣赏:不论老彩民还是新彩民,要树立端正的心态
- 4g信号越来越弱_手机4g信号突然变弱_微速讯
- 河南商丘考古发现城摞城奇观
- 全球视点!依然的意思
- 规范功效宣称范围及用语 《牙膏监督管理办法》将于今年12月起实施 全球今头条
- 环球热点!如何才能让细胞自己拒绝变老?郑明明多效沁润精华让你无惧年龄
- 全球视讯!贵池区持续开展不文明养犬行为整治行动
- 天天实时:桐柏县疾控中心:筑起结核病防治屏障 优化营商环境
- 2023盘点文科生十大就业前景最好的专业有哪些 什么专业好 热文
- 观点:为什么优酷会员付费了还不能用
- 张艾文的歌(张艾文)
- 鉨怎么读_鉨
- 热文:运用群众工作方法开展调查研究
- 国际油价继续上涨,但国内需求不足,汽柴油延续弱势|全球热闻
- 邵阳液压(301079):第五届第四次董事会会议决议,审议《关于与关联方共同投资设立智能增材与数字控制研究院有限公司暨关联交易的议案》 每日焦点
- 微博抢红包技巧有哪些
- 当前速看:湘江新区雷锋街道整治“三合一”场所安全隐患 增强消防安全意识
- 龙虎榜丨同花顺今日涨18.08% 2家机构净买入2.29亿元
- 民航进入夏秋航季:春秋航空国际航班量将达2019年同期4成 全球最新
- 3月23日利华益异辛醇价格暂稳-速看料
- 通用变速箱缺陷引集体诉讼
- 天天短讯!精准有效发挥金融兴农作用
- 双面镜是什么
- 当前短讯!邓正红能源软实力:美联储未来加息措辞软化 提振石油软实力价值